


Publisher
Illustrator
Cover Designer
Editor

Except where otherwise noted, this book is licensed under
Attribution-NonCommercial-ShareAlike 4.0 International
(CC BY-NC-SA 4.0) by Richard Schneeman.

Illustrations Copyright © 2022 Travis Stewart

Richard Schneeman
Travis Stewart
Travis Stewart
Ruby Ku

i



Building a contribution
practice
If you’ve found yourself thinking, “I would love to contribute, but I
just don’t have the time,” you’re not alone. Time is constantly in short
supply. The day always seems to end before you can write that issue
response or start researching that feature idea. Unfortunately, I don’t
have a way to give you more hours in the day. Instead, we’ll look at
how successful contributors find the time and how you can do it too.

Successful contributors don’t rely on willpower to find time. Instead,
they work to craft systems that support their contributions and
lifestyle. If they find themselves overwhelmed, they don’t push
through. They find ways to cut scope and floss one tooth. They don’t
wait to work on open source “when they feel like it”. They build habits,
block-out time, and rely on tools to keep them on track. Building a
successful contribution practice won’t give you more time to work,
but it might feel that way.

In this section, we will look at how four personas contribute to open
source. Pick the one you resonate with the most and learn how to
adapt their practices to your life. Keep your SMART contribution goals
in mind while you’re working on your plan.

There is no “one right way” of contributing to open source.
Committing to a plan that fits your lifestyle sets you up for success.

Once-a-week dabbler

Meet Kayla (she/her). Kayla likes React.js, pamplemousse flavored
sparkling water and has carved out an hour to contribute to open
source every week.

She set a recurring calendar entry for herself on her corporate
account so no one else would schedule time over this block. When
she first started, Kayla would choose to take the hour off over her



lunchtime, but she gradually found that morning work and
unexpected incidents would bleed into this time. She would forget
about her open source work until it was too late.

Kayla’s calendar notification now fires first thing in the morning every
Thursday. Some days, she’s excited to see what new issues she will
encounter. Some days, she is terrified she won’t know what to do. But
after a few minutes of sipping sparkly water and reading issues, she
always finds something interesting.

Kayla has been working on open source contribution for a while. She
took some vacation time to go backpacking, but she’s about to hit a
forty-week streak. That means in the last year; she’s dedicated almost
a whole work week to practicing open source contribution. Way to go,
Kayla!

Her time is starting to pay off, too. The work is beginning to feel
natural, and all those communication and code skills are showing
up in the workplace. She heard a rumor that one of the projects she
contributes to might give her commit access pretty soon!

Friday Funday (Or some other day)

Lemar (he/him) loves coffee and working with Python. He started by
carving out an hour a week but found that the closer he looked at the
repos, the more contribution ideas he got. He expanded from once a
week to once a day. This pattern worked for a while, but he found the
end of the hour would come too soon, and he had to spend too much
time getting his head back in the contribution space each time.

Initially, Lemar tried to schedule time on Monday. Unfortunately, he
found that too many little fires around the office demanded his
attention. They would keep him from getting uninterrupted open
source time.

Now, he prefers to sit down and be focused for larger chunks of time.
He noticed that co-workers were likelier to head out of the office early
on Friday or take the whole day off as part of a three-day weekend. He
decided to devote a half-day to open source every Friday.



Like Kayla, he found that he needed to start early, so he worked from
morning until lunch. He has a growing backlog of feature
contribution ideas that he gets from helping to maintain
documentation and triage issues.

He’s had so much success with big time chunks that he started sub-
dividing them into specific contribution goals. For example, he always
reads and responds to at least one issue and pulls a task from his
backlog. Later he explores new contribution ideas.

At four hours a week, he’s been able to make a huge impact. Lemar
works with his manager to track contributions and balance his team’s
needs. He already has access to a significant project and is
considering taking on maintenance of a small library.

Lemar’s co-workers comment on his quality of work and how they
wish more people would write such detailed commit messages. Great
job, Lemar!

Weekend/weeknight Warrior

Alena (they/them) and Rami (they/him) both program in Java. Alena
listens to techno music while they program, while Rami prefers
classical. Alena goes to a major university, while Rami is in the final
weeks of a hacker bootcamp. They’re both comfortable with their
programming language. With a few years of coding experience, they
have been looking for ways to get more time on practical projects that
they can show off to employers.

Because they’ve got school during the day, they can’t commit to
working on open source from nine to five.

Alena prefers to work evenings. They’ve got a Tuesday-Thursday
cadence. After they return from classes, they eat a snack, unwind with
some cat videos, and then have a thirty-minute session blocked out
for open source. They like to set a visual timer to keep them on track.
Alena used to get distracted by social sites and the news. After using



a focus app to block those pesky diversions, she now finds she has
built more self-control. The work is engaging enough to stay focused
without any apps.

Rami is too tired to do extra work in the evenings and has kids to
put down for bed. He found that a one-hour session while the kids
are napping on the weekend, works well. That practice helped level
up their debugging skills. This strategy leaves room for them to have
some downtime to pick up the house and watch nature
documentaries.

Alena and Rami, you are both putting in the work. Keep it up!

Your turn: pick a plan

These are some made-up scenarios to dramatize some real-world
strategies that I’ve seen. Try to visualize what contributing looks like
for you, and then make a specific time commitment on a specific day
and put it on the calendar.

To get you started, here are a few questions:



• What days work best? Weekdays, weeknights, or weekends?

• What time of the day do you prefer? Mornings, afternoons, or
evenings?

• Can you block out a large chunk of time or only tiny chunks?
Big blocks mean you’ll have more time to build context, but they
are harder to schedule.

• Can you work toward your goals one day a week or several?
More time means faster growth, but don’t burn yourself out.

• What reminder systems work best to keep you on track?
Calendars, to-do apps, or something else?

• Where is your optimal contribution environment? Will you
prefer to be at your computer desk or your favorite chair?

• Are there any foreseeable conflicts that might clash with your
plan? Above we saw incidents, bedtime routines, and workplace
norms get in the way.

• Can you contribute during your workday? If you’re not able to
contribute during your workday see Where contributions meet
career for advice.

Take this moment to answer these questions. Don’t worry if you don’t
have all the answers. Your life will change and we will talk about how
you can adapt your plan. Once you’ve answered the questions, put
your plan on your schedule. Do it today. Do it right now.

You might think, “but I’m not even done with the book yet.” You don’t
even have to wait to finish to build a schedule. When your
contribution time comes up, you can spend it reading about how to
contribute. Once you’re done with the book, you’ll already be in the
habit of working toward your open source goals.

You need time and repetition to build good habits. Carving out time
for your contribution habit will set you up for success.



Adapt your plan

Almost every one of the examples I gave started with one plan and
moved to another. It’s okay if you find out your system isn’t working
for you or that you need to make changes. You don’t have to stick to a
rigid schedule that you don’t like forever.

That said, don’t just delete your calendar entry and wing it. That’s the
same as canceling a personal trainer and saying, “I’ll run when I feel
like it.” If you cancel one set of plans, replace them with another.

Here are some tips that can help you adapt:

• If you have to miss a contribution block, move it to another time
instead of deleting or skipping it.

• If the same scenario makes you miss a block several times,
consider if it’s a temporary or systemic failure. What can you
adjust to make sticking to your plan easier?

• Revisit the “pick a plan” questions any time to re-evaluate. Over
time your preferences and schedules will change. Forcing
yourself to stick with a plan that doesn’t work for you can’t work
in the long run.

• Set aside 5-10 minutes to reflect on the reality of your plan and
how well it’s meeting your needs. Did you hit your goals or fall
short? Why? Adjust your plan based on this feedback. When
you’re getting started, revisit after your first week. Then after
your first month, and regularly every three months after that. Set
up a reminder for these contribution plan check-ins, so you don’t
miss out.

• Consider switching up your schedule just to see what happens.
Plan a week where you try something new. Maybe you’ll like it.
Maybe you won’t. Either way, you’ll gain valuable feedback.

When I’m frustrated that my plans aren’t working, I think of this
Bruce Lee quote: “Notice that the stiffest tree is most easily cracked,
while the bamboo or willow survives by bending with the wind”.

Instead of trying to be perfect, try to be flexible. As you grow, adapt
your contribution plan to grow with you.



Recap

1. There is no “one flavor” of open source contributor. Some developers work
nights and weekends, while others work during the workday. Pick a
schedule and craft a practice that works best for you.

2. If your situation changes or things aren’t working, revisit your goals and
contribution practice. Open source contribution is about growth and
learning. Find a practice that supports you in your journey.

3. When making plans, rely on systems, not willpower. Use repetition and
tools like recurring calendar invites to build sustainable habits.


	Contents
	Welcome
	Intro
	Who is this book for?
	What programming languages do you need to know?
	How should you read this book?
	Definitions

	Why listen to me?
	Why does this book exist?
	CodeTriage came first
	From CodeTriage to How to Open Source

	Why do developers want to contribute to open source?
	What motivates me
	What motivates other developers
	Intrinsic vs. Extrinsic Motivations
	Let your motivations evolve

	Why do projects need contributors?
	A maintainer is not forever
	How can we retain maintainers longer?
	How can we prepare for when maintainers leave?

	What comes next?
	Getting unstuck
	The curse of knowledge
	Why do maintainers tag issues with labels like “good for beginners”?
	Ghosting and the bystander effect
	There are no beginner issues, only beginner actions
	Floss one tooth — comment on one issue
	The goal of open source contribution is to keep playing

	Face your contribution fears
	Imposter syndrome
	What happens if I strike out? Focus on batting 300
	Will a maintainer yell at you?
	Get in the arena

	See yourself as a contributior
	“They don’t do that where I’m from”
	Systemic “-isms” at play in open source: Meritocracy is a lie
	Inclusion requires your active role

	Find your next contribution opportunity with COIL
	First example: Don’t avoid potholes. Fill them
	What potholes teach us about open source
	Second example: Delete the database with confidence
	What database deletion tells us about open source
	Third example: The slow race to view routes
	One last loop with routes
	What routes in the browser can tell us about open source
	Building your toolbox

	Building project context
	Project etiquette, norms and governance
	Explicit learning: Contribution guides
	Types of contribution guides to look for
	Implicit learning: Unspoken rules through observing
	Implicit learning example: Snip snip
	Implicit learning example: The case of the metaprogramming meltdown

	Prioritizing contribution opportunities
	Is the change small?
	Case study: Big versus small
	Is the change provably correct? (Fixing a regression, updating contradictory docs)
	Is the change performing a common cleanup task? (Housekeeping)
	Is the change similar to something previously merged? (Precedent)
	Is there public and visible support for a change?
	Are you avoiding additional unnecessary changes? (Say no to mixing features and refactoring)
	What do projects need? Sell me this code

	Project research exercises
	Merged or closed pull requests
	Merged or closed pull requests in action
	Age and comment count exercise
	Age and comment count in action
	Look at who is commenting and what they are saying
	Is there a standout maintainer you admire?

	Familiarity cheatsheet
	Issues and Bug Reports
	Reading and categorizing issues
	Click an issue, especially if the title is confusing
	Build understanding
	Know the Issue types
	Types of bugs
	Types of feature requests
	Figure out what category your issue falls into
	Take action

	Reproducing bugs
	Further information needed
	Minimum viable reproduction
	Reproduction with code
	Awesome reproduction
	Common ways reproduction instructions can fail
	Is a reproduction that valuable?
	Your first response

	Debugging issues
	Confirm it’s still broken
	Group- and link-related issues
	Isolating failing behavior
	Report your findings and keep digging
	Writing a failing test
	Debugging a hanging program

	Giving feedback on feature requests
	Can you explain the problem being solved in your own words?
	Did you validate the opportunity?
	Do you have any hesitation, doubt, or dislikes you wish to express?
	If it’s a pull request, did you validate the implementation?
	Did you discuss alternatives?
	Did you ask for explicit changes?
	Did you thank the issue creator?

	Navigating conflict through communication (NVC)
	Example: The Cop library
	NVC on issues

	Issue cheatsheet
	Writing Documentation
	Understanding documentation
	Types of Documentation
	User-level documentation (project guides)

	What if a project doesn’t have user-level documentation?
	Reference-level Documentation

	Documentation layout
	Documentation Flow
	Good documentation says “why”, not “how”

	Documentation formatting
	Example: Opportunity finding through documentation exploration
	Documentation conventions: Class versus instance method syntax (for Ruby)

	Documentation examples
	Dive into examples: FileUtils.mkdir_p
	Dive into examples: Dir.mktmpdir
	How do you keep the example code up to date?
	Example contribution opportunities

	Documentation example prerequisites
	Does the example code contain all the necessary setup steps?
	Is the calling context explicitly stated?

	Documentation descriptions
	English, proficiency, and documentation
	Description: Does it explain the purpose? (Why does this code exist?)
	Tips on writing a description when you’re stuck
	Description: Does it use common words, phrases, or use cases that people may be searching for?

	Documenting inputs
	Documenting inputs: Arguments
	How do you document arguments?
	Documenting inputs: Environment variables
	Documenting inputs: Config, constants, and globals
	Documenting inputs: External state. What’s on disk or through the network
	Specifying the unknown in documentation: unknown brackets

	Documenting outputs
	Documenting outputs
	Errors as output
	Not quite an input, not quite an output - Failure behavior
	Side effects as output
	Side effects in action: Cutlass

	Documenting unfamiliar code
	Why document code you didn’t write?
	Documenting someone else’s code: The research strategy
	Reproduction - Class-level docs
	Reproduction - Look for tests
	Debugging - Reflection
	Reproduction — Use cases in the same codebase
	Give up the search?
	Building context - Search the internet
	Write documentation like a support engineer
	Building context - Read the source
	Exercising the code
	Debrief

	Documentation cheatsheet
	Making pull requests
	What even is a pull request?
	What is a Git?
	What is a commit in Git, really?
	What is a branch in Git?
	What is a merge in Git?
	How are branches and commits used to build a pull request?

	How to make a pull request
	Using a web interface
	Using a graphical user interface (GUI)
	Using the command-line interface (CLI)
	Example with CodeTriage: Forking a project
	Example with CodeTriage: Clone your fork to your local machine
	Example with CodeTriage: Make a branch to hold your work locally
	Example with CodeTriage: Make your change
	Example with CodeTriage: Push your change to your fork’s branch
	Using a mailing list
	What pull request method should you use?


	What makes a good pull request?
	How do you write a good pull request title?
	How do you write a good pull request description?
	Understanding where your commit message meets your pull requests
	Have you reviewed any pull request templates?
	Did you say “thanks” to the maintainers?

	Automated PR checks
	Why did automated checks not trigger against my pull request?
	Checks did not run and are awaiting approval
	Checks ran, and they failed
	Checks ran, and they passed

	After your pull request
	Have you found a short-term workaround?
	Have you considered making your fix into a library?
	Have you explored alternative implementations?
	Can you recruit some meaningful comments from the community or co-workers?
	Do you have any other changes or PRs that you want to work on?
	Why do maintainers ghost PRs?
	What you can do about maintainer ghosting?

	Responding to comments
	Did you get a temperature from the commenter on your change?
	Did the commenter validate your implementation or your opportunity?
	Did the commenter ask for explicit changes?
	Explicit requests are in the eye of the beholder
	How to disagree with a change request productively?

	Pull request cheatsheet
	Defining contribution goals
	Specific: Can you identify a clear project or problem you are solving?
	Measurable: How are you going to know if you’re meeting your goals?
	Achievable: Are you able to do the work?
	Relevant: Does this align with your longer-term goals?
	Time-bound: What is your goal time frame?

	Building a contribution practice
	Once-a-week dabbler
	Friday Funday (Or some other day)
	Weekend/weeknight Warrior
	Your turn: pick a plan
	Adapt your plan

	Where contributions meet career
	Unfunded: Nights and weekends
	Working on company time: Under the radar
	Working on company time: Officially blessed
	My bright spot: Blessed one card at a time
	Getting to blessed
	Getting to blessed: What do you want?
	Getting to blessed: What does your company want?
	Getting to blessed: What does your manager want?
	Getting to blessed: Aligning all the goals
	You are the future of a funded and sustainable open source pipeline

	Epilogue: You are the future of open source
	Definitions
	Acknowledgements

